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3Introduction: Current Interest in Real Computation

• Foundation of scientific and engineering computation

• Inadequacy of standard computability/complexity theory

• Two current schools of thought
∗ Algebraic School (Blum-Shub-Smale, . . .

∗ Analytic School (Turing (1936), Grzegorczyk (1955), Weihrauch, Ko,. . .

• Multiprecision computation ought to be part of this foundation

• Numerous applications
∗ Cryptography and number theory, Theorem proving, robust geometric algorithms,

mathematical exploration of conjectures, etc
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4Brent’s Work in Complexity of Multiprecision
Computation

• Remarkable series of papers by Brent over 30 years ago established:

• Standard elementary functions (exp, log, sin, etc) can be evaluated to

n-bits in time O(M(n) logO(1)(n))

• Under natural conditions, zeros of F (y) is equivalent to evaluating F (y).
∗ If F (y) can be evaluated in time O(M(n)φ(n)), then the inverse function

f(x) such that F (f(x)) = x can be evaluated to n-bits in time O(M(n)φ(n)).

• Linear reducibilities among these problems:
∗ Multiplication Equivalence class: M ≡ D ≡ I ≡ R ≡ S

∗ E(sin) ≡ E(cos) ≡ E(tan) ≡ E(arcsin) ≡ E(arccos) ≡ E(arctan

∗ E(sinh) ≡ E(cosh) ≡ E(tanh) ≡ E(arcsinh) ≡ E(arccosh) ≡
E(exp) ≡ E(log)

• These results remain unsurpassed
∗ There are various extensions, e.g., van der Hoeven on holonomic functions

∗ Are most of the problems in this area essentially solved?
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6Brent’s Axioms

• Brent’s multiprecision model was described in his 1976 JACM article
∗ “Fast Multiple-Precision Evaluation of Elementary Functions”

∗ We call them “axioms” here

• AXIOM 1: Real numbers which are not too large or small can be
approximated by floating point numbers with relative error O(2−n).

• AXIOM 2: Floating-point addition and multiplication can be performed
in O(M(n)) operations, with relative error O(2−n) in the result.

∗ M(n) is the time to multiply two n-bit integers

• AXIOM 3: The precision n is a variable, and a floating-point number
with precision n may be approximated, with relative error O(2−m) and
in O(M(n)) operations, by a floating point number with precision m, for
any positive m < n.
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7BigFloats or Dyadics

• Multi-precision floating point numbers (bigfloats, dyadics) are used to
establish these results

• A bigfloat number has the form 2e〈f〉 where 〈f〉 := f · 2−b|f |c ∈ [1, 2)
∗ Represented by the (exponent/fraction) pair 〈e, f〉

• Precision of 〈e, f〉 is lg |f |

• Size of 〈e, f〉 is the pair (lg |e|, lg |f |)

• Set of dyadic numbers: D := Z[12] = {m2n : m,n ∈ Z}
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8Error and Accuracy

• Let x, x̃, ε, n ∈ R

• Write “x± ε” to denote some value of the form x + θε where |θ| ≤ 1
∗ The θ variable is implicit

• Say x̃ is an n-bit absolute approximation of x if x̃ = x± 2−n

∗ ex is an n-bit relative approximation of x if ex = x(1± 2−n)

∗ We then say ex has n-bits of (absolute/relative) accuracy

• Write: [x]n for x(1± 2−n), and 〈x〉n for x± 2−n
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II. BRENT’S COMPLEXITY MODEL
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10AXIOM 1: Local/Global/Uniform Complexity

• “Real numbers which are not too large or small can be approximated
by floating point numbers with relative error O(2−n).”

• Interpretation: real numbers x ∈ [a, b] for fixed a, b
∗ If x = 〈e, f〉, then |e| = O(1)

∗ SO, Brent’s complexity statements are about “local complexity”

• Let F be a family of real functions, f ∈ F
∗ LOCAL complexity: Tf,x(n) is time to evalute f(x) to n-bits

∗ GLOBAL complexity: Tf(x, n) is time to evaluate f(x) to n-bits

∗ UNIFORM complexity: T (f, x, n) is time to evaluate f(x) to n-bits
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11EXAMPLE: Uniform Evaluation of Polynomials

• Let F = D[X]
∗ f ∈ F where f =

Pd
i=0 aiX

i

∗ and −L < lg |ai| < L

∗ Let T (d, L, Lx, n) be worst case time to evaluate f(x) to absolute n-bits,

where −Lx < lg |x| < Lx

• LEMMA [SDY’05]:
∗ T (d, L, Lx, n) = O(dM(n + L + dLx))

• Local complexity is T (n) = O(M(n)), when f, x are fixed
∗ Global complexity is exponential in lg Lx, as x varies

∗ Uniform complexity is exponential in lg L, as f also varies

∗ Question: what is the optimal uniform complexity for evaluating polynomials?

• In general, the uniform and global complexity for most families are
currently open

∗ Brent’s genius is to realize that the situation is much cleaner under local complexity
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12EXAMPLE: Uniform Evaluation of Hypergeometric
Functions

• Let F be the family of hypergeometric functions pFq(a1, . . . , ap; b1, . . . , bq;x)

∗ a’s and b’s are rational numbers with `-bit numerator and denominators

∗ x has total size m (i.e., m ≥ s + p where size of x is (s, p)

• THEOREM [DY’05, D’06]:
∗ The uniform complexity of evaluating hypergeometric functions to absolute n-bits

is

O(K
2
M(n + (q + 1)K lg K + Km))

where K = 4m
�

n + 24(q+1)(2(q+1)2`+m)
�

∗ So, local complexity is O(M(n))

∗ and uniform complexity is single exponential in `, m, q.

• The uniform procedure requires nontrivial estimates based on the
hypergeometric parameters

∗ It is open whether there is a uniform procedure to evaluate hypergeometric

functions to relative n-bits
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is

O(K
2
M(n + (q + 1)K lg K + Km))

where K = 4m
�

n + 24(q+1)(2(q+1)2`+m)
�

∗ So, local complexity is O(M(n))

∗ and uniform complexity is single exponential in `, m, q.

• The uniform procedure requires nontrivial estimates based on the
hypergeometric parameters

∗ It is open whether there is a uniform procedure to evaluate hypergeometric

functions to relative n-bits
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13AXIOM 2: Weak versus Strong Mode of Computation

• “Floating-point addition and multiplication can be performed in O(M(n))
operations, with relative error O(2−n) in the result.”

• At issue: input numbers can have their own precision m, independent of
output precision n

• Interpretation : TM(L,m, n) = O(M(n)), TA(L,m, n) = O(M(n))
∗ TM(L, m, n) is the time to multiply inputs of size (L, m) to relative n-bits

∗ TA(L, m, n) is the time to add inputs of size (L, m) to relative n-bits

• But addition can have catastrophic cancellation
∗ E.g., Let x = 3 · 2−m−1 = 〈−m, 3〉 = +0. 0 · · · 0| {z }

m−1

11

∗ and y = −2−m = 〈−m,−1〉 = −0. 0 · · · 0| {z }
m−1

01.

∗ Time to compute [x + y]n is Ω(m) for any n ≥ 1

• WEAK Mode of Floating Point Computation
∗ i.e., Generalized IEEE standard of floating point arithmetic
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14∗ Given an algorithm A in ideal arithmetic, let Aθ be implementation of each

operation using precision θ

∗ Thus, TA(L, m, n) = O(M(n)) holds only in the WEAK Mode

• STRONG Mode of Floating Point Computation
∗ Algorithms actively modify the precision of its operations during computation

∗ E.g., in Brent’s self-adjusting Newton methods
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15AXIOM 3: Pointer Machines versus Turing Machines

• “The precision n is a variable, and a floating-point number with precision
n may be approximated, with relative error O(2−m) and in O(M(n))
operations, by a floating point number with precision m, for any positive
m < n.”

• Interpretation: let B(L,m, n) be the time to compute [x]n given any
bigfloat x of size (L,m).

∗ The axiom says B(L, m, n) = O(M(n))

• Brent’s ultimate computational model is the (multitape) Turing machine
∗ Thus M(n) = O(n lg n lg lg n) (Strassen-Schönhage)

∗ Note that B(L, m, n) = O(M(n) + L) on a Turing machine, and since

L = O(1), Axiom 3 holds

• If we consider more general classes of real computation, involving matrices
∗ It is no longer obvious that B(L, m, n) = O(M(n)) can be simultaneously

achieved for all the numbers in the matrix
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16Pointer Machines

• To preserve Axiom 3 in the more general setting, we propose to use
Schöhage’s elegant and flexible model of Pointer Machines

∗ M(n) = O(n) in this model (Schönhage)

∗ Much nicer that O(n lg n lg ln n)!

• LEMMA (cf. [SDY’05]) Assume the Pointer machine model
∗ Give k-vectors U and V whose entries are floating point numbers of size (L, m),

we can

∗ (1) Truncate [U ]n in time O(kM(n))

∗ (2) Approximate [U + V ]n in time O(kM(n))

∗ (3) Approximate [U � V ]n in time O(kM(n)) where � means componentwise

multiplication

• This result is unlikely to hold in Turing machines
∗ We need this kind of bounds in our complexity statements
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Schöhage’s elegant and flexible model of Pointer Machines

∗ M(n) = O(n) in this model (Schönhage)

∗ Much nicer that O(n lg n lg ln n)!

• LEMMA (cf. [SDY’05]) Assume the Pointer machine model
∗ Give k-vectors U and V whose entries are floating point numbers of size (L, m),

we can

∗ (1) Truncate [U ]n in time O(kM(n))

∗ (2) Approximate [U + V ]n in time O(kM(n))

∗ (3) Approximate [U � V ]n in time O(kM(n)) where � means componentwise

multiplication

• This result is unlikely to hold in Turing machines
∗ We need this kind of bounds in our complexity statements

Brent Symposium, Berlin July 20-21, 2006



16Pointer Machines

• To preserve Axiom 3 in the more general setting, we propose to use
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17

III. FURTHER ISSUES IN
MULTIPRECISION COMPUTATION

(CASE STUDY)
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18Motivation: Guaranteed Accuracy Computation

• Nonrobustness is a widespread problem in geometric computation
∗ Geometry is about discrete relations: Is a point on a line?

∗ Any error on such decision is a “qualitative error”, causing programs to crash

• In the last decade, the “Exact Geometric Computation” (EGC) approach
has proven to be the most successful solution to nonrobustness

∗ Current EGC libraries include LEDA, CGAL and Core Library

∗ They all depend on guaranteed accuracy computation

• “Guaranteed accuracy computation” here means:
∗ the requirement of a priori guarantees on error bounds

∗ Cf. Interval analysis gives a posteriri guarantees on error
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19Implications for Multiprecision Computation

• The guaranteed accuracy “mode” of computation imposes strong
requirements

∗ (1) We cannot use asymptotic error analysis

∗ (2) Our algorithms must explicitly control the error in each operations

∗ (3) We need to decide Zero

• We illustrate with the problem of Newton iteration
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20Approximate Zeros

• Fix f : R → R, a smooth function.

• Given z0 ∈ R, construct the Newton iteration sequence
∗ zi+1 = N(zi), where N(z) = z − f(z)/f ′(z)

∗ Assume zi → z∗.

• DEFINITION (Smale) z0 is an approximate zero
∗ if it converges quadratically:

∗ i.e., |zi − z∗| ≤ 21−2i
|z0 − z∗| for all i ≥ 0

• POINT ESTIMATE THEOREM (Smale, et al)
∗ If α(z0) < 3− 2

√
2 ∼ 0.17, then z0 is an approximate zero.

• γ(z) := maxk≥2

∣∣∣f (k)

k!f ′

∣∣∣1/(k−1)

∗ β(z) :=
��� f(z)

f ′(z)

���
∗ α(z) := β(z)γ(z)

∗ So, lower bounds for α(z) are effectively computable
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21Robust Approximate Zeros

• Problem: N(f) must be approximated
∗ Even if exact computation is possible, we may prefer approximation

• Let Ni,C(z) :=〈N(z)〉2i+C

∗ Starting from ez0, let ezi = Ni,C(ezi−1) define the robust Newton sequence

(relative to C)

• DEFINITION: z̃0 is a robust approximate zero
∗ if for all C ≥ − lg |ez0 − z∗|, the robust sequence relative to C converges

quadratically

• THEOREM [SDY’05]
∗ If α(ez0) < 0.02, the ez0 is a robust approximate zero

• Cf. Malajovich (1994) – weak model
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• Problem: N(f) must be approximated
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22How to Implement Robust Newton Iteration

• TWO PROBLEMS
∗ (C) How to estimate C?

∗ (N) How to evaluate Ni,C(z)?

• (SOLUTION C) Let n0 be the first n such that 〈N(z0)〉n > 2−n+1

∗ LEMMA: It suffices to choose C to be n0 + 2. Moreover, this choice is no larger

than − lg |z0 − z∗|+ 5.

• (SOLUTION N) LEMMA:
∗ To compute Ni,C(z), it suffices to compute

∗ (a) f(z) to absolute (K + 2i+1 + 4 + C)-bits

∗ (b) f ′(z) to absolute (K ′ + 2i + 3 + C)-bits

∗ (c) the division to relative (K ′′ + 2i + 1 + C)-bits

∗ where K ≥ − lg |f ′(z)|, K ′ ≥ − lg |f ′(z0)|γ(z) , K ′′ ≥ 3− lg γ(z)
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23UPSHOT: Uniform Complexity for Approximating Real
Zeros

• Assume f(X) ∈ R[X] is square-free
∗ Let f(X) =

Pd
i=0 aiX

i, where −L < lg |ai| < L

∗ Assume that we can compute a bigfloat approximation [ai]n in time B(n)

• FOR SIMPLICITY, assume L ≥ lg d.
∗ PROBLEM: given a robust approximate zero z0 with associated zero z∗, to

approximate 〈z∗〉n

• THEOREM [SDY’05]:
∗ Assume ∆ ≥ − lg |f(z0)|.
∗ Then we can compute 〈z∗〉n in time

O[dM(n) + dM(∆) + d lg(dL)M(dL)]+

O[d lg(n + L)B(n + dL) + d lg(dL + ∆)B(dL + ∆)]

• COROLLARY (Brent):
∗ The local complexity of finding zeros of f(X) is O(M(n))
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25CONCLUSION, OPEN PROBLEMS

• Brent’s work on complexity of multiprecision computation 30 years ago
remains a landmark

• Most of his results have withstood the test of time, and are suspected
optimal (but would require major breakthrough in complexity theory to
show)

• But the situation is completely open when we extend his fundamental
framework to global and uniform complexity Could we find examples of
tradeoffs among the different parameters?

• Guaranteed precision computation enforces a stronger standard in design
and error analysis of multiprecision algorithms

• Specific Open Problem:
∗ What is the uniform complexity of polynomial evaluation?
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END OF TALK
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27Thanks for Listening!

• Papers cited in this talk:
∗ [SDY’05]: “Robust Approximate Zeros”, V.Sharma, Z.Du, C.Yap, ESA 2005

∗ [DY’05]: “Uniform Complexity of Approximating Hypergeometric Functions with

Absolute Error”, Z.Du, C.Yap, ASCM 2005

∗ [D’06]: “Algebraic and Transcendental Computation Made Easy: Theory and

Implementation in Core Library”, Ph.D.Thesis, New York University, May 2006

∗ [Y’06]: “Theory of Real Computation according to EGC”, To appear, special

issue of LNCS based on Dagstuhl Seminar on ‘Reliable Implementation of Real Number

Algorithms: Theory and Practice’

“A rapacious monster lurks within every computer, and it dines
exclusively on accurate digits.”
– B.D. McCullough (2000)
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